M463 Homework 20

Enrique Areyan
 July 24, 2013

Let X and Y be independent standard normal variables.
a) For a constant k, find $P(X>k Y)$.

Solution:

$$
P(X>k Y)=P(X-k Y>0)=1-P(X-k Y \leq 0)
$$

If we let $V=X-k Y$, then $V \sim \operatorname{Normal}\left(\mu_{V}=0, \sigma_{V}=\sqrt{1+k^{2}}\right)$, since the sum of independent normal R.V.s is normal. Moreover, we can compute the mean and variance as follow:

$$
\begin{gathered}
\mu_{V}=E(V)=E(X-k Y)=E(X)-k E(Y)=0-k \cdot 0=0 \\
\sigma_{V}^{2}=\operatorname{Var}(X-k Y)=\text { by independence }=\operatorname{Var}(X)+(-k)^{2} \operatorname{Var}(Y)=1+k^{2} \Longrightarrow \sigma_{V}=\sqrt{1+k^{2}}
\end{gathered}
$$

Now we can compute the following probability:

$$
1-P(V \leq 0)=1-P\left(V * \leq \frac{0-0}{\sqrt{1+k^{2}}}\right)=1-P(V * \leq 0)=1-\Phi(0)=0.5
$$

b) If $U=\sqrt{3} X+Y$, and $V=X-\sqrt{3} Y$, find $P(U>k V)$.

Solution: First note that both U and V are sums of independent normal R.V.s and thus, they are normal. Their parameters are:

$$
\begin{gathered}
U, V \sim \operatorname{Normal}(\mu=0, \sigma=2), \\
\mu=E(U)=E(\sqrt{3} X+Y)=\sqrt{3} E(X)+E(Y)=\sqrt{3} \cdot 0+0=0=E(V)
\end{gathered}
$$

$\sigma^{2}=\operatorname{Var}(U)=\operatorname{Var}(\sqrt{3} X+Y)=$ by independence $=(\sqrt{3})^{2} \operatorname{Var}(X)+\operatorname{Var}(Y)=3+1=4=\operatorname{Var}(V) \Longrightarrow \sigma=\sqrt{4}=2$
Using the result obtained in a), and the fact that the sum of normal random variables is normal we get that:

$$
P(U>k V)=P(U-k V>0)=1-P(U-k V \leq 0)=1-\Phi(0)=0.5
$$

c) Find $P\left(U^{2}+V^{2}<1\right)$.

Solution: Note: $U^{2}+V^{2}=(\sqrt{3} X+Y)^{2}+(X-\sqrt{3} Y)^{2}=3 X^{2}+2 \sqrt{3} X Y+Y^{2}+X^{2}-2 \sqrt{3} X Y+3 Y=4 X^{2}+4 Y^{2}$. The variable $R^{2}=X^{2}+Y^{2}$ where both X and Y are independent standard normal R.V.s is distributed as an exponential with parameter $\lambda=\frac{1}{2}$. Hence:

$$
P\left(U^{2}+V^{2}<1\right)=P\left(4 X^{2}+4 Y^{2}<1\right)=P\left(X^{2}+Y^{2}<\frac{1}{4}\right)=1-e^{-\frac{1}{8}}=0.117503
$$

d) Find the conditional distribution of X given $V=v$.

Solution: By definition of V :

$$
X=V+\sqrt{3} Y . \quad \text { If we are given a value } v \text { of } V \text { then } X=v+\sqrt{3} Y
$$

This is just a linear transformation of a normal variable and hence, it is normal. Its parameters are:

$$
\begin{gathered}
\mu_{X}=E(X)=E(v+\sqrt{3} Y)=E(v)+\sqrt{3} E(Y)=v+\sqrt{3} \cdot 0=v \\
\sigma_{X}^{2}=\operatorname{Var}(X)=\operatorname{Var}(v+\sqrt{3} Y)=\operatorname{Var}(\sqrt{3} Y)=(\sqrt{3})^{2} \operatorname{Var}(Y)=3 \cdot 1=3 \Longrightarrow \sigma_{X}=\sqrt{3}
\end{gathered}
$$

In short, $X \sim \operatorname{Normal}\left(\mu_{X}=v, \sigma_{X}=\sqrt{3}\right)$

